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Abstract—Coarse-grained reconfigurable architectures
(CGRAs) have been regarded as promising accelerating
paradigm for the ever-evolving algorithms in multi domains.
Obtaining high energy-efficiency on CGRAs relies heavily on
the combination of mapping, timing (issuing) and routing to
decrease run-time idle. Statically configuration-driven designs
are widely adopted, but the leak of hardware flexibility leads
to a heavy reliance on burdensome scheduling of compiler
to avoid over-serialization. This draw a trade-off between
hardware/software co-design in CGRA scheduling.

Unlike a static-schedule oriented approach, we propose DFGC
(DFG-aware NoC Control), a dataflow-driven CGRA which takes
the advantages of fully exploring data parallelism in different
kernels by using dataflow dynamic firing with low overhead.
The DFGC compiler is responsible for analyzing critical data
paths and generating TimeStamp predictions instead of per cycle
configuration. The rough predicted results enable router and PE
to be sensitive to the entire dataflow graph, thereby accelerating
the whole computation process. The DFG-aware NoC design
realize a combined scheduling technique of hardware dynamic
decision-making together with static prediction. DFGC repre-
sents a paradigm of CGRA that is worth exploring, achieving
hardware/software co-design without relying on sophisticated
designed compiler. Experiments show that DFGC achieves 1.32×
energy efficiency improvement over a dataflow architecture and
1.8× energy efficiency improvement over a state-of-the-art static
configured CGRA.

Index Terms—CGRA, dataflow, hardware/software co-design,
NoC

I. INTRODUCTION

Coarse-grained reconfigurable architectures (CGRAs) have

received increasing attention in recent years due to its charac-

teristics of both approaching near-ASIC performance while

providing flexibility. The efficiency of CGRA is primarily

achieved by deploying various types of computations on the

architecture and enabling high data parallelism through tempo-

ral and spatial execution [1]. This kind of complex allocation

of hardware resources relies heavily on the static compilation

by the compiler, for it takes on the task of providing static

configurations on mapping, issuing and routing [2], [3].

However, when accelerating kernels with complex control

flow loops, pure statically scheduled CGRAs suffers from

insufficient parallelism due to over-serialization and workload

imbalance [4]. This has created a higher demand for hard-

ware flexibility and reconfigurability: The architecture should

employ flexible and efficient methods to partition loops, and

* Corresponding author

further exploit the data parallelism inherent in operations [5].

This is where the concept of dataflow comes into play in

CGRAs. Work like Triggered Instruction [6], [7], Softbrain [8],

SPU [9], SNAFU [10] and others maintain the mutual de-

pendency between dataflow graph (DFG) nodes through their

hardware execution mechanism, and gain efficiency from the

dynamic issuing of dataflow. These work demonstrate a high

degree of hardware flexibility.

The introduction of dynamic hardware mechanisms such

as dataflow has broadened the choice of software-hardware

co-design scheduling approaches. CGRAs can either achieve

hardware simplification with the precisely defined hardware

behavior of each cycle through a rigorous thus expensive

schedule-space search, or add acceptable hardware flexibil-

ity to reduce the burden of software scheduling. Given the

widespread discussion on the former, this paper believes

that the latter deserves more profound exploration: a general

solution is in need to maintain low overhead while providing

hardware with a certain degree of flexibility, realizing joint

optimization of mapping, scheduling, and routing without

relying on highly complex compilers.

In this paper, we propose DFGC, a dataflow-driven CGRA.

DFGC benefits from an extended functionality PE (Processing

Element) and Router that are aware of the critical path of the

entire DFG. It can not only keep low complexity of compiler

design in terms of mapping and scheduling, but also utilize the

flexibility of dataflow architectures more efficiently with low

overhead. DFGC compiler generates rough prediction from

the mapping result, and gives PE and router a view of the

overall computation process, thereby achieving the goal of

dynamic scheduling enhancement. This work achieves a co-

design of software and hardware by using software to predict

the reference factors for hardware decision-making process.

We believe that under this technique, dataflow-driven CGRA

is a paradigm worth exploring.

Our contributions are listed as follows:

• A distributed dataflow control mechanism on DFGC, as

well as a supporting dataflow analyze model. Following

the model, we propose the DFGTE algorithm, which

predicts the possible significant transmission paths during

the actual execution process. According to the mapping

result, DFGTE can generate a rough TimeStamp to guide

the scheduling of PE and NoC (Network-on-Chip).
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• The DFG-aware hardware design. DFGC utilizes both

static predicted result and local real-time status to make

hardware decisions on PE and NoC, which could ac-

celerate execution and manage routing resources effec-

tively. Through the technique, DFGC achieves software-

hardware synergy in scheduling.

• Evaluation on DFGC, including comparison to dataflow

architecture, CGRA, GPU and DSP.

The rest of the paper is organized as follows: Section II

provides background and related work, Section III proposes

the dataflow analyzing model and TimeStamp extraction algo-

rithm. Section IV gives the detailed hardware implementation

on router and PE, as well as the hardware schedule process.

Section V evaluates, and Section VI concludes.

II. BACKGROUND & RELATED WORK

This section discusses the relationship between mapping,

issuing and routing of CGRAs, to reach hardware efficiency.

The merits and drawbacks of introducing dataflow dynamic

firing into CGRA are also presented.

A. Scheduling: hardware/software tradeoff

The choice of scheduling method is vital to CGRA effi-

ciency, because it determines the spatial-temporal allocation

from workload to hardware substrate. The mapping and sub-

sequent scheduling process are completely coupled in those

pure static configured CGRAs, where joint optimal strategy

of mapping, routing, and issuing are found by heuristic-based

methods such as simulated annealing, to generate per-cycle

hardware activity configurations [2], [11]–[14]. The search for

an optimal solution is constrained by hardware resource lim-

itations and specific execution model. These static scheduled

CGRAs stands out for low hardware overhead but struggle to

adapt to algorithms with complex control flows due to their

lack of time-multiplexing mechanism for hardware resources,

or the deficiencies in timing. For instance, DySER [15] only

allows non-conflicting dataflow dependencies to coexist on

the architecture at the same time, so as FIFER [16]. 4D-

CGRA [17] allows conflicting nodes to be assigned to the same

resource at the same time, but requires compiler to predict

all fine-grained conflicting hardware behavior. Moreover, they

often have strict requirements for the partitioning of compu-

tational stages to form predicated DFG [16], and need delay

mechanism for synchronization [18]. Therefore, these CGRAs

also have to bear the burden brought by the compiler, which

is due to the complexity of the timing process and the time-

consuming overhead of prediction [19].

The execution model of dataflow-driven CGRA is funda-

mentally different from the above-mentioned statically com-

piled CGRA. Its scheduling method, that is, deciding when to

execute a certain operation somewhere depends entirely on the

control of dataflow, rather than static planning (predicting) in

advance. Therefore, there is no need for compiler to analyze

the allocation of hardware resources for each calculation cycle

because hardware can autonomously explore data/instruction

parallelism. A typical task scheduling technique on these

architectures is static mapping and dynamic issuing, such as

in [8], [20], [21]. Advanced mapping algorithms are also

required to consider load balancing and routing overhead,

and distribute DFG nodes or edges to specific function units

or routers [22], [23]. Considering this, many work aims to

incorporate hardware-specific execution model into mapping

process, improving potential instruction/data-level parallelism

and reducing NoC congestion through dynamic hardware

scheduling. However, static mapping cannot accurately predict

all actual runtime conditions.

Current new architectures combine the advantages of the

aforementioned two approaches by adopting a co-scheduling

strategy between software and hardware. This approach pro-

vides better adaptability to complex loop control, and brings

higher requirements for software-hardware co-design. Al-

though REVEL [13] combines two computing paradigms, it

heavily relies on compiler’s heuristic search for the globally

optimal timing decision due to the consideration of balancing

between dataflow PEs and systolic PEs. SNAFU [10] em-

ploys dynamic dataflow firing, which alleviates the burden on

compilers for operation timing. However, it does not support

conflicting mappings of dataflow nodes or edges to single PE

or route, and can only speed up inner loops. According to

the above analysis, a consensus can be reached that the se-

lection of hardware scheduling mechanism evidently requires

a hardware/software co-design trade-off: hardware flexibility

and software complexity both matter.

DFGC takes a different approach by utilizing a block-level

dataflow control mechanism, which decouples hardware exe-

cution from static mapping and allows for dynamic schedul-

ing and firing of instruction blocks. The dataflow control

mechanism enables DFGC to better adapt to algorithms in

multi-domains. As for efficiency, the scheduling on DFGC

only requires minor assistance from the compiler in terms

of timing. The compiler of DFGC does not need to plan

the overall operation process (no need to generate timetable),

but leaves the dynamic exploration of data parallelism to

the hardware mechanism. It only needs to generate rough

prediction TimeStamps, to assist hardware scheduling and

make acceleration. By filling in the limitations of hardware

dynamic scheduling with a software-hardware co-scheduling

approach, the hardware utilization of DFGC is improved.

B. Routing: bridge the gap

NoC is an indispensable module in CGRA and fills the

gap between mapping and issuing, and its design impacts

the actual hardware resource utilization. The interconnection

on CGRA needs to be adapted to the architecture-specific

execution mechanism on one hand, and on the other hand,

it is also influenced by the actual real-time communication

requirements. The requirement of generality calls for recon-

figurable NoCs, whether driven by configurations of compiler

or dynamically routing, to maintain high efficiency PE-PE

communications [18]. Configuration-driven CGRAs generate

routing results based on the edges of the DFG according

to the mapping results. This serves as the foundation for
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(a) Trans time in router (conv)

(b) Edge latency of DFG

Fig. 1: (a) The average period that a packet stays in router.

Star mark the most overloaded router port on each PE, black

represents unused ports, based on ideal 1-cycle-trans. (b) DFG

edge latency, recorded by producers of dependencies.

the compiler to predict and set strict configurations for each

cycle, for example, HyCube [24]. In this paper, we discuss the

relationship between routing, mapping, and hardware resource

status on dataflow-driven CGRAs and seek optimal solutions.

We choose a typical dataflow-driven CGRA deployed with

mesh NoC, which heavily relies on PE-PE communications

of data/control signal transmission to execute DFG-like pro-

grams. At run-time, data from five directions (N, E, S, W,

L) are passed to their destination Router in a FIFO order.

An arbiter manages competing data paths using a round-

robin policy to maintain fairness and balance the transmission

pressure.

Fig. 1 (a) demonstrates the average transmission time on

different router ports of convolution (CONV-64) on a 4×4 PE

array. Data latency on the router is caused by queuing delay

for multiple packets from the same source, competition among

packets with the same destination, and downstream congestion.

The uneven distribution of data and control path transmission

characteristics in the convolution example, particularly with

the highest value 3.29 cycle in PE-5 (located at (1, 1)), ctrl

port of direction W, can slow down the overall execution.

This is primarily attributed to the suboptimal allocation of

network resources during the execution of the DFG on the

array, caused by the limited control over the overall execution

process from a hardware perspective. As for the perspective of

DFG, Fig. 1 (b) shows the average latency from the producer

side of DFG edge in three general applications, represented

by (trans time/packet num) on dependency edge. It can be

observed that in FFT-64, PE-15 (located at (3, 3)) experiences

the maximum level of congestion in the ctrl path. The DFG

nodes located on this PE, along with their downstream nodes,

are subjected to varying degrees of edge delay, leading to

obstruction of intermediate results in the computation process.

So as PE-1 when focusing on control signals of DFG in

GEMM-64. Hence, a dynamic forwarding network that avoids

latching intermediate results or critical dataflow control signals

is necessary based on the above analysis. To better allocate

on-chip network resources, the router and related structures

inevitably need to go beyond the original hardware perspec-

tive, abandon the fair scheduling and instead providing optimal

strategies from the global perspective of the entire DFG.

In this paper, DFGC employs a combination of software

and hardware schedule mechanism to compensate for the

limitations of pure hardware decision-making. Routing and

execution on DFGC is determined in real time by both run-

time hardware status and rough prediction results based on

mapping result, in order to balance the actual resource demand

of routing and the macro running state of the whole DFG. The

mapping strategy only needs to consider the route length and

resource distribution without considering the actual scheduling

process. The scheduling scheme of DFGC not only achieves

flexible control with lower hardware overhead, but also gains

the advantages of dataflow control for complex computation

modes, and greatly reduces the burden on the compiler,

eliminating the need to predict and schedule configurations

for each cycle.

C. Challenges

DFGC differs from common CGRAs in that it uses dataflow

to dynamically handle resource issuing to improve utilization,

and differs from the general dataflow structures in that it

introduces partial compiler predictions to guide more efficient

data transfer, balancing hardware and software in scheduling.

We distill the main challenges in designing an enhanced

dataflow-driven CGRA, which will be discussed in this paper.

1 Effectively modeling and predicting on DFG. A DFG

analyzing method is in need to identify the critical path that

slows down the overall execution from the complex dataflow

dependencies. This requires an optimization and abstraction

of the original execution mechanism with a time-phase parti-

tioning of execution process, without over-detailed prediction.

As the internal execution order is somewhat decoupled from

static compilation mapping result on dataflow-driven substrate,

it is almost impossible to predict when the data on which

the consumer depends will arrive at runtime [1]. DFGC

uses dynamic routing and rough predictions to handle PE-PE

communication, addressing the limitations of the router’s per-

spective for overall speedup. The paper focuses on effectively

modeling and predicting with this challenging approach.

2 Optimizing hardware decisions via DFG-aware de-
sign. Router on DFGC is supposed to leverage the aforemen-

tioned modeling and prediction results to prioritize the transfer

of critical nodes on the data path, while flexibly controlling
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real-time routing resources with low control overhead. Our

goal is to speed up the execution of the entire DFG by

using this smart DFG-aware hardware, increasing the overall

resource utilization of the PE array. It is crucial to analyze

and evaluate the runtime resources and make optimal decisions

for the whole process, which plays a critical role in reducing

the idle state of the entire architecture. Finally, the benefits

of the design and the comparison with other alternatives are

presented through experiments.

III. DFGC OVERVIEW DESIGN

The underlying hardware control mechanism and upper-

level software execution model are closely related in the

architecture, establishing the specific problem scenario for this

article. This section introduces the overview design of DFGC

and presents the modeling method for TimeStamp prediction.

A. DFGC Control Mechanism

After studying the evolution of prior dataflow architec-

tures [4], [20], [25], [26], a trend is found that architectures

are choosing coarse-grained (block-, loop-, kernel-level, etc.)

dataflow execution to reduce control complexity on hardware.

In this paper, DFGC also chooses a CGRA with integrated

dataflow execution model as hardware substrate. The schedul-

ing flexibility of DFGC falls between “Ordered dataflow”

and “Tagged Dataflow” taxonomy of prior work [13], as it

does not support instruction reordering within the same block

but supports out-of-order control between different DFG edge

instantiations. This enables DFGC to handle conflicting DFG

nodes and edges independently. In addition, the duplicate

instantiate operations further amortize the control overhead.

As shown in Fig. 2, all the configurations and instruc-

tions are transferred to CBUF before being packaged and

broadcasted to different PEs via data mesh, while MICC is

responsible for run-time schedule on PE array scale, including

kernel switch and task level parallelism exploiting. DFGC

eliminates the centralized control within a single DFG, which

means that the switching of loops within a graph is achieved

through distributed control on the PE array. This approach

effectively reduces the number of routing hops required for

control signals during instance switching and mitigates the

significant, unpredictable factors introduced by centralized

control in subsequent modeling processes. Additionally, it alle-

viates the burden on the NoC and enhances overall efficiency.

The structure of PE is illustrated in the lower part of Fig. 2,

where each PE contains a control unit (CU) for block schedul-

ing, maintaining inner PE block info and status information

for dataflow dynamic firing. A series of combinational logic

forms block matching mechanism, prefetching blocks for the

decoupled pipeline before execution. Furthermore, an active

and ack control protocol with block tokens and credits enables

pipelined execution of blocks inner PE, and keeps dataflow

execution dependencies cross PEs. Dynamic scheduling occurs

in a block-level fashion, whenever tokens and credits from

upstream and downstream of a dataflow node meet certain

requirements, the node will trigger an Instance and decouple
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Fig. 2: DFGC control mechanism diagram.

its computation stages (LD, CAL, FLOW, and STORE) for par-

allel execution. The reconfigurable control mechanism makes

it possible for DFGC to deal with many kinds of computation

manner and complex task-level parallelism.

B. DFGC Analyzing Model

1) The Setup of “Instance” and Challenges: The map-

ping strategy in DFGC is partially developed based on prior

work [27], where the memory access behavior, data parallelism

and data dependencies in the calculation process of the algo-

rithms are comprehensively considered in this figure, unify-

ing their dataflow representation. It is worth noting that the

multiple instantiation and pipelined execution of DFG edges

on DFGC is particularly suitable for complex calculations

with contextual dependencies through iterations. Apart from

complex control loops, it is usually used in cycles for direct

accumulations, where an Instance of instruction can directly

compute over the result of its previous Instance. DFGC’s

energy efficiency is also benefited from the amortizing of con-

trol overhead in multiple Instances of an edge. Furthermore,

for commonly unrelated loop executions, DFGC can also

distribute them across parallel edges and nodes, maximizing

instruction-level parallelism through decoupling the pipeline

and utilizing the dynamic dataflow firing. This distinction

is what sets DFGC apart from most CGRAs and also the

reason why most previous static scheduling strategies are not

applicable to DFGC such as [5].

The DFGC execution mechanism provides flexibility and a

wide range of mapping options, but also presents challenges.

This parallel execution pattern through different iterations

emphasizes the importance of spatially distributing compu-

tational resources, i.e., load balancing. Furthermore, almost

every instruction is ready to be executed in each cycle during

execution, and each function unit generates a result almost
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Algorithm 1 The DFG TimeStamp Extraction Algorithm

Input: G - DFG, P - PE array, A - a mapping G → P
Output: T - TimeStamp of (A, B - blocks, P)

1: N ← nodes(G), B ← Instance expansion(N , G)

2: T ← null, pCosts ← null

3: for each block i in sorted (B, G) do
4: ranked costs ← null

5: if i.children is not empty then
6: for each block c in i.children do
7: cost ← CALPATHCOST(c,B, pCosts)
8: ranked costs.append(c, cost)
9: end for

10: tp ← ranked costs.Sort

11: T ← T + tp � merge duplicate item.
12: end if
13: end for
14: Sort Normalization(T )

15: return T
16: function CALPATHCOST(block n, B, pCosts)

17: ... � return pCosts[n] or n.exeLatency are omitted.
18: mcost ← 0
19: for each block c in n.children do
20: cost ← CALPATHCOST(c,B, pCosts)
21: mcost ← max(mcost, cost + transLatency(n, c))
22: end for
23: pCosts[n] ← n.execLatency + mcost

24: return pCosts[n]

25: end function

every cycle, leading to a high volume of data transmission

between PEs and intense competition on NoC. Therefore,

real-time and precise control and scheduling of data transfers

within the NoC are crucial to maximize the utilization.

2) DFG TimeStamp Prediction: Based on the above anal-

ysis, we have employed a load-balance-centric dataflow in-

struction scheduling algorithm based on [28], which ensures

that different components within the same execution unit are

utilized synchronously to a maximum extent.

After mapping, instructions are packed to nodes and form

DFG, which is then used as input to extract prediction result

for PE and NoC (Algorithm 1, DFGTE) in DFGC compiler.

DFGTE plans the control signals and data interactions be-

tween code blocks following the hardware control protocol,

enabling coarse-grained inter-block interaction priority predic-

tion (higher TimeStamp has higher priority). For data memory

access operations, we extract the destination SPM and set up

virtual DFG nodes on the neighboring PE to simulate the

actual control and data transfer scenarios. DFGTE expands

the static collection of DFG nodes into dynamic executable

blocks based on the initial mapping configuration, adhering to

dataflow firing rules. For a small-scale instantiation of nodes

within a single graph, a top-down search approach is adopted

by expanding the nodes and evaluating the overhead. For

cross-DFG Instances, the recursive search for edge weights

between graphs is no longer performed (line 1). By calculating

the costs (routing & execution) of downstream blocks for each

block, DFGTE prioritizes the transmission and execution be-

havior for each instruction block during execution (line 7, 16–

25), forming TimeStamp. The transmission cost is determined

solely based on the routing hops for the target signals/data,

without considering any potential network congestion.

DFGTE is ingenious in generating TimeStamp predictions

with the triggered execution of blocks as the anchor point,

because despite the unpredictable trigger time of specific

instructions, the Instance iteration and execution on DFG

edges strictly adhere to dataflow dependencies. The TimeStamp
design enables the compiler to have clearer optimization ob-

jectives during mapping: maximizing computational resource

utilization while offloading conflict DFG execution to hard-

ware through global prediction parameters. In addition, the

size of the TimeStamp under this design depends entirely on

DFG depth and the number of Instance of specific kernel.

The former generally does not exceed 10, and the TimeStamp
file can also be replicated when the number of iterations is

large. Therefore, this design extremely reduces complexity and

storage required by generating per-cycle static timetables.

IV. DFGC DFG-AWARE NOC DESIGN

This scection illustrates the detailed DFG-aware NoC

control process from inner-PE to inter-PEs. DFGC realizes

hardware-software co-design through this approach.

A. TimeStamp Table Monitor on PE

Once generated by the compiler, the TimeStamp informa-

tion, along with other dataflow configuration, is broadcasted

to all PEs and stored in TimeStamp Table Monitor (TPM)

and Block Status Control (BSC), respectively. Fig. 3 shows

the whole scheduling process from inner-PE dynamic firing

to inter-PE NoC control. As in (a), 1 BSC receives control

signals from PE and external sources, updating local block

status. Meanwhile, idle pipeline components request access

from BSC, which places matched blocks in the block pool,

before retrieving the block with the highest “TP” value from

the TPM. The TimeStamp value is a 9-bit (32 blocks per PE)

value generated from the prediction result (DFGTE, line 14).

2 The selected block in the pipeline undergoes decomposi-

tion and execution, with its instructions continuously issuing

request signals or data to local and external PEs, shown in (b).

3 Upon completion of a block’s execution, it sends control

signals to the upstream and downstream blocks within the

same DFG. These signals, along with the packets generated in

the pipeline, are sent back to the CU for message packaging.

Each packet checks the TimeStamp information of the block

it belongs to from the TPM, and then uses it again as the

priority of the subsequent routing on the NoC to speed up the

transmission of the critical path.

B. DFG-aware run-time Router

4 In each router, packets from local PE (L), as well as

from direction N, E, S, W, are sent to the respective ports and

awaits forwarding. Fig. 3 (c) illustrates hardware design we
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Fig. 3: DFGC PE and NoC hardware design.

implemented on router to accommodate TimeStamp prediction

and improved scheduling of on-chip data transfers.

1) Avoid queuing delay: In each port, the arbiter contin-

uously maintains the priority of the packet at the bottom of

the forwarding queue. Whenever a new packet has a higher

priority than the target value, the new packet is exempted

from queuing and is directly sent to the SWITCH via the

priority transmission channel. The SWITCH arbitrates be-

tween competing packets in each cycle, selecting the higher-

priority packet, otherwise maintaining the round-robin (R-

R) mode for fairness when packets from different directions

have no priority difference. In this case, the combination of

queuing bypass and preemptive switch selection design allow

the DFGC’s NoC to avoid latching intermediate data or control

signal caused by queuing delays.

2) Relieve competing and downstream blocking: 5 DFGC

has set up a hardware-autonomous routing mechanism on

the NoC, that is, the Arbiter decides the direction of packet

transmission based on run-time blocking situation on port,

and send the packet to a relatively idle queue without loss

of transmission distance (multicast is not supported). The

autonomous routing decision enables the efficient scheduling

of DFGC NoC based on real-time congestion conditions.

3) The reconfigurable TimeStamp: 6 DFGC also supports

TimeStamp calibration at run-time. When the “mode” bit of the

TPM entry is set to 1, the “offset” value will be added to the

TP value as an update. On the one hand, MICC can adjust

the execution priority of a kernel relative to other kernels

in real time through this mechanism in a multi-DFG parallel

execution scenario. On the other hand, the block can provide

its last ready upstream producer with a higher priority through

the ack control packet, which could obtain a more balanced

execution and transmission in the next Instance. This offset

backward delivery design serves as a complement in the event

of a serious inaccurate prediction.

In summary, DFGC achieves optimization of NoC and

inner-PE scheduling through a combination of software and

hardware techniques. It employs software predictions to cap-

ture rough hardware execution and communication behaviors,

and uses real-time hardware-based result selection to refine

the software predictions. This method assists the distributed

control of hardware with software DFG-aware global predic-

tion, realizes a novel scheduling method, and improves the

efficiency of the overall architecture.

V. EVALUATION

A. Experiment Settings

Methodology: We implemented DFGC in RTL and syn-

thesized the hardware using an industrial 12 nm process,

meeting timing at a 1 GHz clock frequency. The DFGC

simulator was also developed and was calibrated to cycle-level

accuracy. Evaluation shows that DFGC has peak performance

of 1TFLOPS with a chip area of 26.9mm2 for 3.8 watts.

Benchmark: We compare DFGC to two kinds of baselines.

First is CGRAs (or accelerators) including the dataflow archi-

tecture LRPPU [21], pure statically scheduled HyCube [24],

as well as the hybrid designed REVEL [13]. Second, the

energy efficiency of DFGC is evaluated compared to the three

work: TMS320C6678 [29], NVIDIA Tesla V100 [30] and

Jetson AGX Xavier, representing high-parallel general purpose

approaches. As DFGC is mapped to 12nm process, all the

evaluation parameters are scaled (1.42× per generation due to

0.7 scaling of feature size, with the power remaining the same

as core voltage is kept constant) for fair comparison.

Applications: We implemented 2D fast-fourier transform

(FFT, 16–128, 1K–8K), matrix-matrix multiply (GEMM, 32–

256), matrix-vector multiply (MV, 32–256), and convolution

(CONV in ResNet-18, 50). These kernels play a crucial role in

various critical applications such as signal processing, graph

analysis, machine learning (including deep neural networks),

and communications. The DFGC compiler is developed based

on the LLVM [31] infrastructure. All applications go through

the process of DFG loop splitting, DFG mapping and TimeS-
tamp prediction from C-code in the compiler, before assembly

code and configuration files are finally generated for DFGC.

B. Power and Area Breakdown

Table I shows the hardware design parameters, as well as the

evaluated power and area breakdown of essential modules in

DFGC. The high parallelism of the hardware helps to amortize

TABLE I: Design Parameters and Breakdown

Module Destription/Para. Area (mm2) Power (mW)

single PE

Func. Units (SIMD) 0.7 (2.6%) 73.9 (1.9%)
Control Unit 0.04 (0.2%) 35.1 (0.9%)
Buffer 0.5 (1.9%) 70.9 (1.9%)

PE Array 4 × 4 PE 20.5 (76%) 2878.4 (75.7%)
NoC 16 × Router, 2-mesh 1.4 (5.3%) 265.5 (7%)
SPM 6MB, 8 bank, L shape 4.2 (16%) 534.6 (14.1%)
MICC&CBUF - 0.8 (2.9%) 121.5 (3.1%)

Total 26.9mm2 3.8W
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TABLE II: Hardware Comparison w.r.t. the State-of-the-art CGRA

Design Fabric size Scheduling Method NoC Design Conflict DFG Energy Effic. (GFLOPS/W)

DFGC 4×4 static mapping – dynamic issuing static & dynamic support 189 (gmean)
HyCube [24] 4×4 static mapping – static issuing static, bufferless, multi-hop not support 90–120
REVEL [13] 5×5 static mapping – hybrid static & dynamic NoCs (2×) not support 85–110

the control overhead, and the design employed for TimeStamp
scheduling incurs little overhead (0.03% per PE in total area).

C. Comparison with CGRAs

Due to the shared focus on enhancing dynamic firing of

dataflow, LRPPU is chosen as a comparative reference for

DFGC in the dataflow architectures. As the original design of

LRPPU primarily focused on the CNN-specific domain and

had limited support for various kernels, we extract its central-

ized “iterative pipeline execution” mechanism and implement

it on the hardware substrate of DFGC. This serves as the basis

for comparing DFGC with LRPPU, which is deployed with the

same floating-point computation units and configured to the

same peak performance as DFGC. The following hardware

evaluations of LRPPU are conducted under the same 12nm

process technology. This comparison highlights the advanced

scheduling and distributed control of DFGC.

Fig. 4: Performance & Energy efficiency versus LRPPU.

Fig. 5: Comparison under fabric size 2×4.

Fig. 4 presents the performance and energy efficiency of

DFGC versus LRPPU. The presented data showcases the

averaged results of a series of multi-layer computations con-

ducted within each “convx” module of ResNet, representing

the outcome of each individual layer operation. Fig. 4 (a) and

(b) illustrate the maximum speedup of DFGC over LRPPU

in the ResNet-18 and 50, which are 1.35× and 1.51×, re-

spectively, both occurring at conv2x. Additionally, the overall

geometric mean is 1.25× speedup in these two networks.

(a) and (b) also demonstrate the scheduling effectiveness of

DFGC’s TimeStamp prediction on the delay of DFG edges

across 16 PEs, resulting in a significant alleviation of PE

pressure on the highest edge delay. In conv3x, ResNet-18,

DFGC effectively schedules 28118 data packets, resulting in

an average reduction of 40.67% in the delay of each edge’s

consumer side during execution. DFGC exhibits an average

edge latency reduction of 1.42× and 1.45× compared to

LRPPU in ResNet-18 and 50. As for energy efficiency, Fig. 4

(c) and (d) demonstrates a geometric mean 1.33× and 1.35×
improvement in ResNet-18 and 50, respectively, where the

highest increase in utilization of the computation components

is observed in the conv2x, ResNet-50, where it has been

improved from 49.9% to 68.6%.

To evaluate the scalability of our design, the comparison is

also deployed on a 2×4 fabric substrate, shown in Fig. 5. It

can be observed that on a downscaled array, the scheduling

mechanism of DFGC can still maintain a geometric mean

1.32× and 1.35× energy efficiency improvement, with 1.24×
and 1.27× speedup in ResNet-18 and 50, respectively.

Fig. 6: Performance and energy improvement of other kernels.

The evaluation results of GEMM, FFT, and MV are shown

in Fig. 6. DFGC achieves the best acceleration and energy

efficiency improvements in GEMM-32, with a speedup of

2.44× and an energy efficiency gain of 1.82×. Compared

to the hardware scheduling mechanism in LRPPU, DFGC

achieves gmean of 1.32× and 1.64× efficiency and perfor-

mance improvements, respectively. Lastly, DFGC exhibits a

gmean energy efficiency of 189 GFLOPS/W in small-scale

GEMM, FFT, and MV computations. Furthermore, the time

cost of generating TimeStamp in all experiments can be

negligible compared to the kernel execution time.

As for comparison with the other CGRA designs, due to

different design objectives and target applications, there is a

significant disparity in peak performance among these designs.

We made efforts to mitigate the influence of peak performance

and process technology disparity during the evaluation. Here,
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the hardware comparison is listed in TABLE II. It is shown that

DFGC has an approximately 1.8× and 2× energy efficiency

improvement over HyCube and REVEL, respectively.

D. Comparison with GPU and DSP

Fig. 7: Energy effic. com-

pared to GPU and DSP.

Due to the high peak perfor-

mance of DFGC (1 TFLOPS), it

is evident that the comparisons

with those lightweight CGRAs

are not entirely fair. DFGC ac-

tually has significant advantages

when computing extremely large-

scale kernels. Therefore, we pro-

vide an energy efficiency compar-

ison between DFGC, GPU, and

DSP for large-scale FFT opera-

tions, to show the overall superiority of the architecture. As

Fig. 7 exhibits, DFGC reaches the highest energy efficiency

of 158 GFLOPS/W, at 1K point FFT. The results demonstrate

a 5.9× gmean improvement of DFGC over V100, 4.2× over

Jetson, and 8.9× over DSP in large scale FFT. This further

validates the advantages of DFGC over general-purposed

computing solutions.

VI. CONCLUSION

In this work, we analyzed the relationship of mapping, issu-

ing and routing on two mainstream CGRA design approaches

(static or dynamic scheduling) and highlighted the significance

of software-hardware co-design. Experiments have confirmed

the superiority of DFGC in terms of performance and energy

efficiency, achieved by the DFG-aware design. DFGC fills

the gap between software mapping and hardware scheduling

on high flexible architectures such as dataflow. The proposed

TimeStamp method can be migrated and integrated according

to various architectures and their mapping schemes, enabling

better scheduling. In our future research, we will consider

using actual data transmission condition statistics on PE array

to guide the formation of more optimal mapping solutions.
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