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DFU-E: A Dataflow Architecture for Edge
DSP and AI Applications
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Yanhuan Liu , Ninghui Sun , Xiaochun Ye , and Dongrui Fan

Abstract—Edge computing aims to enable swift, real-time data
processing, analysis, and storage close to the data source. However,
edge computing platforms are often constrained by limited process-
ing power and efficiency. This paper presents DFU-E, a dataflow-
based accelerator specifically designed to meet the demands of
edge digital signal processing (DSP) and artificial intelligence (AI)
applications. Our design addresses real-world requirements with
three main innovations. First, to accommodate the diverse algo-
rithms utilized at the edge, we propose a multi-layer dataflow
mechanism capable of exploiting task-level, instruction block-level,
instruction-level, and data-level parallelism. Second, we develop an
edge dataflow architecture that includes a customized processing
element (PE) array, memory, and on-chip network microarchi-
tecture optimized for the multi-layer dataflow mechanism. Third,
we design an edge dataflow software stack that enables automatic
optimizations through operator fusion, dataflow graph mapping,
and task scheduling. We utilize representative real-world DSP and
AI applications for evaluation. Comparing with Nvidia’s state-of-
the-art edge computing processor, DFU-E achieves up to 1.42×
geometric mean performance improvement and 1.27× energy ef-
ficiency improvement.

Index Terms—Dataflow architecture, edge computing, digital
signal processing, AI, multi-layer dataflow mechanism.

I. INTRODUCTION

EDGE computing [1], [2] has emerged as a powerful tool for
processing data and applications at the edge of a system,

closer to where they are generated or used. This approach
can reduce latency, improve performance, and enable real-time
processing of data. Edge computing typically involves the de-
ployment of specialized devices, including sensors, gateways,
and servers, to facilitate the collection, processing, and analysis
of data near its source. As depicted in Fig. 1, edge comput-
ing requires initial data collection followed by processing, as
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Fig. 1. Representative examples of edge applications.

demonstrated in applications such as autonomous driving [3],
[4], [5], [6], intelligent transportation [7], [8], [9], Synthetic
Aperture Radar (SAR) imaging [10], and target recognition [11].
In the field of autonomous driving, source data is collected by
lidar or cameras and then processed into images, which are
subsequently sent to neural networks for target recognition and
decision-making. In smart transportation, vehicle and people
data are collected by millimeter-wave radar and cameras, and
then sent to neural networks for recognition. In SAR imaging
and target recognition, the target is scanned and imaged by radar,
and the data is sent to the neural network for target recognition.
All these applications share a common feature: data needs to
be processed by a digital signal processing (DSP) module, then
further processed by an artificial intelligence (AI) module, and
finally, the processed results are output. This process is akin to
obtaining external data through eyes and ears and transmitting
it to the brain for identification and decision-making.

The convergence of applications in the DSP and AI domains
has given rise to new challenges in processor design [12],
[13], [14], [15]. To address this convergence scenario, several
approaches have been proposed, each with its unique strengths.
One approach involves using a combination of different chips,
with dedicated DSP chips handling DSP tasks and specialized
NPU chips for AI processing. While these solutions can provide
domain-specific optimization, the fixed ASICs fails to adapt to
newly developed algorithms. For example, the characteristics
(computing, memory access, parallelism, etc.) of new algorithms
vary, which calls for hardware flexibility. Another strategy em-
ploys heterogeneous logic designs on a single chip, integrating
both DSP processing cores and AI processing cores. This ap-
proach allows for tighter integration of DSP and AI functions,
but it may face challenges in programming and communication.
Facing cross-domain application scenarios, such as smart trans-
portation, the heterogeneous solutions lack effective solutions
to achieve low energy consumption and improve performance
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on the complex hardware. The third option is the multi-domain
acceleration solutions, such as NVIDIA GPUs [16], [17], [18],
[19], which have garnered increasing attention and adoption.
These accelerators offer a versatile and programmable hardware
architecture that allows for the execution of both DSP and
AI tasks with the Single Instruction Multiple Thread (SIMT)
execution model. This design choice leverages the inherent par-
allelism in both DSP and AI algorithms, enabling more efficient
utilization of computational resources and adaptable processing
capabilities. Considering factors such as system stability, area
constraints, power consumption, and the dynamic nature of
algorithms, general-purpose acceleration solutions demonstrate
significant advantages [20]. Notably, their flexible architecture
enables the allocation of hardware resources according to the
specific computing power requirements in different DSP and AI
scenarios, thereby achieving higher utilization and performance.

In this paper, driven by real-world requirements from edge
DSP and edge AI applications, we introduce a dataflow-based
accelerator, DFU-E, designed for edge computing. The key
contributions in this paper are:
� We analyze the characteristics of DSP and AI applications

and summarize crucial indicators for edge computing,
which helps us in architecture design.

� We introduce DFU-E, a general-purpose accelerator de-
signed for edge computing based on novel dataflow execu-
tion model, especially for DSP and AI applications.

� We propose a multi-layer concurrent dataflow model to
enhance execution parallelism and improve hardware uti-
lization. This model allows efficient execution of multiple
dataflow graphs (DFGs) simultaneously, which boosts per-
formance and reduces power consumption.

� We implement various hardware and software opti-
mizations, including powerful single instruction multiple
data (SIMD)/Tensor engines, forwarding network-on-chip
(NoC), hybrid scratchpad memory (SPM) and Cache mem-
ory, fine-grained power management and optimized com-
piler tool chain, resulting in improved performance and
energy efficiency.

� Evaluated with typical edge computing workloads, DFU-
E outperforms the NVIDIA edge computing processor,
with higher improvements in performance and energy ef-
ficiency.

This paper is organized as follows. Section II discusses the
challenges brought by edge applications. Section III presents
the DFU-E architecture. Section IV discusses our experimental
methodology and results. Section V shows the related works.
We finally conclude the paper in Section VI.

II. CHALLENGES BROUGHT BY EDGE APPLICATIONS

With the coming end of Moore’s Law [21] and Dennard
Scaling [22], it’s hard to continuously improve the comput-
ing performance of general-purpose processors. Application-
specific integrated circuits offer great advantages because they
can process one or several applications more efficiently with a
smaller area and less power [23]. However, applications evolve
faster than processors, making existing hardware face difficulties

Fig. 2. Execution flow of representative DSP and AI applicaitons, SAR
imaging(a) and YOLO neural network(b).

when adapting to newly developed algorithms. Especially for
application scenarios like edge computing, there are high re-
quirements for computing power, flexibility, and power con-
sumption.

Fig. 2 shows typical algorithm flows of SAR imaging and
YOLO neural network [24]. First, as a widely applied algorithm
in a radar system, SAR imaging contains a series of different
data processing steps [25], including FFT/IFFT, vector-matrix
multiplication, interpolation, matrix transpose, and matrix con-
jugation. In this case, specified accelerators obviously are not
compatible to every step of such complex algorithm types, let
alone the massive data throughput, real-time and energy effi-
ciency requirements. Another typical example is convolutional
neural network (CNN) [26], [27], [28], [29], the input or batch
size of each layer may be different, which leads to different
demands of computing structure. The characteristics of these
applications can be concluded as follows: 1) Large-scale regular
data with simple calculation patterns, such as matrix multiplica-
tion, convolution, and FFT. The input data in these applications
are regular, which means the source data has good temporal or
spatial locality, and the calculation pattern is regular. Therefore,
the designers can leverage high-width SIMD structures to speed
up such kinds of applications. 2) Small-scale regular data with
a simple calculation pattern, which is not large enough to fully
utilize the SIMD hardware resource. What’s worse, the energy
efficiency of such applications will be poor due to low utilization.
3) Large-scale regular data with complex calculation patterns,
which may mix with conditional jump, swap, comparison or
other operations, is more complicated than simple operations,
making it challengeable to fully exploit the power of SIMD.
4) Small-scale regular data with complex calculation patterns,
which likes small-scale regular data with simple calculation
patterns. For these applications, the most effective way is to
exploit the parallelism of data execution as much as possible
with multi/many-core processors. It is not enough to use hetero-
geneous ASIC computing systems to solve the above problems,
because it will bring programming problems and introduce ex-
cessive system hardware complexity, resulting in non-negligible
communication overhead [30].

In addition to being able to efficiently support multiple types
of computing modes mentioned above, it is necessary to main-
tain low power consumption while increasing hardware flexibil-
ity to adapt to changing algorithms. Dataflow architectures [31],
[32], [33], [34], [35], [36] are promising approaches because of
their ability to exploit multi-level parallelism while achieving
high hardware utilization and energy efficiency, which is very
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TABLE I
HARDWARE INNOVATION AND SOFTWARE ADAPTION MADE FOR DFU-E TO CONFRONT THE DEMANDS OF EDGE WORKLOADS

Fig. 3. Codelet dataflow model vs DFU-E dataflow model.

suitable for edge computing scenarios. Compared to the SIMT
execution model in NVIDIA GPUs, dataflow architectures can
offer higher parallel execution ability and reconfigurability,
since dataflow architecture is driven by data, not instructions,
they can better accommodate the dataflow characteristics
and data dependency relationships of different applications.
This makes dataflow architectures perform more efficiently in
handling complex data dependencies and irregular computation
processes. Additionally, dataflow architectures can optimize
hardware resources utilization by mitigating resource wastage
associated with thread synchronization and data conflicts,
resulting in enhanced energy efficiency. Numerous studies have
analyzed the characteristics of dataflow and SIMT structures
[37], [38], [39].

In DFU-E design, we implement an optimized Codelet
model [40], as shown in Fig. 3. In the Codelet model, the exe-
cution of the node adopts a non-preemptive mechanism. When
a node is executed, the node will occupy the PE resources, and
the PE will not be released until all the instructions in the node
are completed. DFU-E decouples the task within the dataflow
graphs (DFG) node into four consecutive pipeline stages. Each
stage is an atomic schedule and execution unit. In this way, a PE
can be shared by at most four different DFG nodes at the same
time and the memory access and data transfer latency can be
overlapped as much as possible. Table I summarizes the design
of DFU-E’s hardware and software based on the requirements

of the applications, including execution model, PE Architecture,
network, memory, etc.

III. DFU-E ARCHITECTURE

Based on the design considerations discussed above, we in-
novate DFU-E with novel hardware/software enhancements, as
outlined in Table I. More details are as follows.

A. Overview of DFU-E

Fig. 4(a) is the overall architecture of DFU-E, which consists
of a PE array with 16 PEs, a global on-chip memory divided into
16 banks, two data recombination modules, two DMA channels,
a PCIe 4.0 interface, eight 32 b-wide LPDDR5 interfaces, an
MCU and a Micro Controller (MiCC) module. The PE array is
organized as a 2D mesh by 16 routers and can be reconfigured as
an 8× 8 sPE array, which is described in detail next section. The
DFG can be mapped, scheduled, and executed with these PEs or
sPEs. Two DMAs are responsible to transfer data from DRAM
to on-chip memory. The MCU is a 4-core RISC-V CPU used to
manage the execution of DFU-E. The MiCC is responsible for
run-time schedule on the whole PE array scale, including kernel
switch, task-level parallelism exploiting, as well as instantiation
of block execution. In order to improve energy efficiency, we
have implemented a distributed power management mechanism,
including the Local PCU (in dark blue) and Local Alarmer (in
yellow) units in Fig. 4(a). The detailed introduction of DFU-E
is as following sections.

B. Architecture of sPE

As described above, each PE in DFU-E consists of a cluster
of four sub-PEs (sPE): sPE(1) to sPE(4), shown in Fig. 4(f).
The four sPEs are not simply interconnected through a common
bus. It is a tightly coupled inter-pipeline interconnection, which

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 18,2025 at 06:16:09 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: DFU-E: A DATAFLOW ARCHITECTURE FOR EDGE DSP AND AI APPLICATIONS 1103

Fig. 4. Overview of our DFU-E and the internal structure of a sPE.

means the computing units of four sPEs can be merged as a high-
width computing unit. For example, each sPE has a SIMD-8
computing unit, therefore four sPEs can be merged as a SIMD-
32 computing unit. The PE array can be configured to work in
two modes, a small-scale 4× 4 PE array or a large 8× 8 PE
array. Therefore, according to the requirements of workloads,
PE or sPE can provide high-width SIMD or Tensor computing
resources or low-width SIMD or Tensor computing resources to
pursuit higher energy efficiency. Fig. 4(b) is the detail description
of a sPE, including:
� A Control Unit, which is responsible for configuring sPE,

maintaining the execution status, and scheduling blocks that
are mapped to the sPE. A series of combinational logic forms
block matching mechanism, prefetching blocks for the decou-
pled pipeline before execution. Furthermore, an active and ack
control protocol with block tokens and credits enables coarse-
grained pipelined execution of blocks inner sPE and keeps
dataflow execution dependencies inter sPEs. The reconfigurable
hierarchical control mechanism makes it possible for DFU-E
to deal with many kinds of computation manner and task-level
parallelism. Unlike other processors that use a centralized con-
trol scheme, DFU-E uses a distributed control scheme in which
each sPE has its own control unit and can make most of the
control decisions independently. With this capability, it can
enable fine-grained control and data reuse, which are important
to achieving the desired programmability.

� Four decoupled function units, named Load Unit, Cal
Unit, Flow Unit, and Store Unit. Instructions are arranged and
decoupled into four sequential processing stages: Load, Cal,
Flow, and Store. Therefore, data feeding is separated from
computing. Data are loaded prior to execution, which reduces the
underutilization due to lack of data and parallelism improvement
of PE components. The Load Unit loads data from on-chip
memory to Operand RAM. Once the associated task is enabled,
an instruction block can execute its load operation. The Cal Unit
represents the execution unit. An instruction block is ready to
fire to the execution unit after its dependent data are all satisfied
and activate signal arrives. Under the scheduling of Control Unit,
these blocs with status information, like memory address, head
PC, and instance counter, are dispatched to four corresponding
function units once they come with an idle state. The Store unit is
responsible to store calculation results to on-chip memory. The
Flow unit transfers data between PEs or sPEs. As is shown in
Fig. 4(c), such a multi-step/stage management method overlaps
the steps and stages of different instruction blocks. This in
turn helps maximize the utilization of the PE execution units,
especially Cal Units, which is important because improving the
utilization of Cal Units is the key to improving performance and
energy efficiency.
� A data buffer and an instruction buffer, named Operand

RAM and Inst RAM. Under the same capacity, SRAM has a
smaller area and lower power consumption than the register. So
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Fig. 5. The execution flow of tensor computation.

we replace the large register file with SRAM and use hardware
and software mechanisms to guarantee that this SRAM-based
approach can achieve performance similar to that of the RF-
based approach. The Inst RAM consists of multiple single-port
SRAM banks. Each bank can only be occupied by a single
function unit at any time. The Operand module consists of
multiple 1-write-1-read SRAM banks, each of which can serve
at most one write and one read at the same time. These four
function units fetch operands from a shared operand ram which
can handle five read accesses and three write accesses following
a priority: Cal >Load, Store >Flow. As shown in the bottom of
Fig. 4(b), three out of five read ports (Ports 0–2) are used by the
CAL Unit. These three ports have the highest priority and must
be served at the same time. The ports of Store and Flow Units
have a lower priority. As a result, CAL Instructions can always be
served without stalling, but ST and Flow Instructions may have
to wait because of bank conflicts. To avoid the conflict of CAL
Unit read ports, we map input operands of a CAL instruction to
be distributed in different banks during compilation.

C. Cal Unit

In order to meet a wide variety of computing requirements,
the Cal Unit supports scalar, SIMD, tensor, and special function
computations, while supporting FP64, FP32, INT32, FP16, FP8,
INT8, and UINT8 computation precisions. For SIMD unit, it can
be reconfigured to support different precisions, and a flexible
shuffling unit is equipped for SIMD reordering and merging, to
satisfy different requirements of vector processing patterns. In
AI workloads such as YOLO and Transformer, a large number
of GEMM operations take up the majority of the workload’s
execution time. The tensor ALU is more suitable for handling
such computations. The tensor ALU is configured with a ma-
trix register, accumulation register, sparse index register, and
sparse processing module to accelerate dense or sparse GEMM
operation.

Fig. 5 shows the detailed procedure of GEMM operations
performed by the tensor unit. Before the computation, the multi-
pliers and addends of the multiplication-add operation are loaded
from the Operand RAM into the matrix register. For the sparse
GEMM, the index of the sparse matrix needs to be loaded into
the sparse index register. A sparse processing module is used to
compress the original matrix, and the original data is entered into
the Mx-Tensor (Mixed-precision Tensor) Unit after a MUX. The

MX-Tensor Unit supports mixed-precision floating-point/fixed-
point GEMM operations. After the MX-Tensor Unit completes
the calculation, the results are temporarily stored in the accumu-
lation register for data reuse. By repeating the above steps, the
tensor unit can perform larger GEMM operations, and the final
result is stored back in the Operand RAM by the accumulation
register.

The advantage of our design is that the matrix sparsity is
allowed to be processed inside the tensor unit. In the load stage,
the sparse index table is generated according to the position of
zero entries in the sparse matrix and then loaded into the sparse
index register by the Operand RAM. As shown in Fig. 5, at the
beginning of computation, the sparse processing module per-
forms row compression/column compression on the two source
operand matrices respectively according to the sparse index and
finally forms a matrix that meets the shape of the Mx-Tensor unit.
Provided that the data processed every time does not exceed the
capacity of the matrix register, our sparse processing module can
be configured to compress the matrix in different ratios, such as
4:2 or 4:1, which makes the sparse processing able to satisfy
the needs of more scenarios. This design allows tensor units
to support multiple types of sparse and dense GEMM without
introducing additional storage resources, and sparse GEMM can
achieve up to 4 times better performance than dense GEMM.

D. Micro Controller (MiCC)

The control flow and structure of MiCC are shown in Fig. 4(d).
MiCC is responsible for task scheduling and assignment. After
the compiler divides the applications into several tasks, each
task forms a DFG, containing instruction blocks with data de-
pendencies that are to be mapped to the PE array for execution.
All the DFG configurations and binary files are transferred to
Control Buffer (CBUF) through DMA before being packaged
and broadcasted to PEs or sPEs. During the execution, MiCC is
responsible for the run-time schedule on the whole PE array,
including kernel switch, task-level parallelism exploiting, as
well as loop execution of blocks.

E. Flexible NoC Design

Fig. 4(b) describes the structure of a sPE. There are three
separate I/O ports, a control port (A), a memory access port (B),
and a REQ and ACK port (C). The three ports are connected to
the three sets of separate networks of the NoC. The A network
is responsible for transporting instructions and configuration
commands to each sPE, therefore, it is unidirectional between
configuration unit and PEs. The data transmission of LOAD,
STORE and FLOW operations go through the memory access
lane, which is the B network. And the C network is used for the
request commands of memory access and the ACK information
to maintain the execution sequence between DFG nodes, so they
are bidirectional.

As shown in Fig. 6, DFU-E configured as an 8× 8 sPE array,
the NoC of DFU-E is designed with forwarding connections to
improve data fetching bandwidth and alleviate transfer latency.
Routing ports of each sPE are connected with the adjacent sPEs,
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Fig. 6. Forwarding networks.

while the connections are also forwarded straight ahead. Phys-
ically, each data path in a certain direction passes through the
adjacent sPE to the next unit (sPE or memory), linking two inputs
of them. As the enhancement of the mesh Noc, this interlaced
forwarding interconnection allows two concurrent data transfers
in rows and columns. Application kernels described as DFGs
with different data reusability can benefit from the forwarding
NoC. As the 8 × 8 NoC shown in Fig. 6, memory-bound
workloads suffering from long distance will benefit from lower
transfer latency because all memory requests and returns are
transferred in a cluster way (4× 4 NoC), which results in the half
reduction of transfer hops in NoC. For example, for the network
in the X and Y directions, the closer to memory, the greater the
degree of transmission congestion. To alleviate the congestion,
we can map the nodes of DFG with low data correlation to the
clusters of X and Y respectively, and fetch data from the memory
of X and Y respectively. Transfers of data dependence between
nodes in the complicated DFG with high data reusability, are also
accelerated since multi-hop data dependence is flowed along the
tighter forwarding interconnection.

F. Enhanced DMA Design

To solve the problem of excessive consumption of CPU
resources caused by the transfer of large amounts of data, we
have introduced an enhanced DMA module for direct data
transmission. Based on this, DMA can dynamically perform data
preprocessing tasks according to configuration requirements,
such as matrix regularization, transposition, and padding, to
reduce the operating burden of computation units and fully
exert its computing power. Unlike ordinary DMA which only
performs simple transfers, our enhanced DMA can reduce the
design complexity of the computation unit through the real-time
preprocessing function mentioned above, allowing data to be
directly processed when it reaches the computation unit, thereby
improving computing efficiency.

To improve the utilization rate of hardware resources, the
execution order of the data transfer and data computation can
be reasonably scheduled to achieve the effect that while the
computation unit is processing, the data transfer component is

Fig. 7. Process flow of the enhanced DMA.

Fig. 8. Hybrid storage of SPM and cache.

transferring the next batch of data, thus minimizing time delay.
Fig. 7 shows the effect of parallelization optimization of our
enhanced DMA during data transmission and computation.

In order to reduce the time overhead of DMA configuration,
our enhanced DMA can pre-store the configuration information
of repeated DMA transfers, and then drive DMA to read and
parse the configuration information autonomously. The bottom
of Fig. 7 shows the effect of optimizing the pre-stored config-
uration of DMA. On this basis, for regular data transmission,
DMA can open the address accumulation function required for
a new round of transmission by itself without repeatedly storing
configuration information in on-chip storage, further saving
storage space and register configuration time and thus achieving
higher performance.

G. Hybrid On-Chip Memory

In Fig. 8(a), the on-chip memory of DFU-E applies a hybrid
architecture combining SPM and cache to support both explicit
and implicit data movement while sharing the same physical
SRAM on-chip, which brings low area overhead. As shown in
Fig. 8(b), the running mode of on-chip memory is configured
by MiCC when starting a new round of execution. SPM data
path uses a dedicated multi-functional DMA that can efficiently
transfer a large amount of data from LPDDR in a Ping-Pong way
to overlap latency between computation and data fetching. This
kind of transfer is static, explicit and suitable for applications
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involving regular memory accesses, which can be controlled by
developers.

Cache usually consumes more energy and time because of tag
search and comparison, as shown in Fig. 8(e), but it possesses
the function of dynamic and off-chip global memory access,
which is transparent to developers and suitable for applications
involving more irregular memory access. Because the on-chip
Cache is shared with the whole PE array, there is no need
to maintain consistency between Cache blocks. We adopted
the write-through Cache pattern, therefore, when the current
execution is finished, we just invalidate all the Cache lines if
the next round of execution uses fresh data transmitted by PCIe.
This ensures that the new round of execution will not be effect by
previous data residing in Cache. In DFU-E, Cache is organized
in a set-associative way. Different from traditional Cache, our
Cache uses the interleave mapping method when mapping DDR
space, which is convenient for PE to access the corresponding
Cache through NoC routing.

H. Power Management

Tens of billions of transistors have been integrated into the
DFU-E chip. High concurrent circuit flipping will cause serious
instantaneous current, which leads to severe IR drop problems.
Excessive IR drop may cause timing failure, abnormal reset, or
disruption of data processing. Therefore, the power design of
DFU-E revolves around power stability and energy efficiency.
As shown in Fig. 4(a), the DFU-E power control system consists
of a Global Power Control Unit (Global PCU), Local Power
Control Unit (Local PCU), and Local Alarmer, achieving a
two-level power optimization realtime management structure.
Global PCU allocates real-time IR drops and temperature thresh-
olds of sub-modules based on the application type and current
performance bottlenecks of each sub-module, maximizing and
reasonably allocating applications from a system perspective.
The Local PCU reads the the operating frequency, IR drop
threshold, and temperature threshold configuration from the
Global PCU and the corresponding IR drop, temperature, and
performance information of the local alarm in real-time, effi-
ciently configuring the corresponding sub-modules in real-time,
without communicating with the Global PCU, ensuring power
stability and high energy efficiency in real-time. Local alarmer
can quickly sense IR drop and temperature information from the
Local PCU, ensuring efficient subsystem regulation.

As shown in Fig. 9, in a new task configuration phase, the
Global PCU analyzes the current system bottlenecks based on
the execution information of the DMA, on-chip memory, and
PEs. Then, based on the characteristics of the upcoming DFGs
and the ratio of busyness duty cycles, IR drop alarm and temper-
ature alarm, it issues IR drop threshold, temperature threshold
and frequency configuration to Local PCU configurations to
achieve better choices at the system level. When the Local
PCU generates an alarm, the Global PCU adjusts the system
threshold configuration to improve chip stability. Local PCU
receives Global PCU configuration information and changes
operating frequency considering the IR drop, temperature, and
performance information of the Local Alarmer, to maintain

Fig. 9. Power control strategy of DFU-E.

the system works in a dynamic, efficient, and stable status in
real-time. The Local Alarmer can provide real-time feedback
on IR drop risks, high-temperature risks, and ensure realtime
performance. When the local IR drop or temperature exceeds
the threshold, the Local PCU will emit warnings to the Global
PCU to achieve the secondary dynamic feedback configuration.

I. Multi-Level Parallsim

In order to deeply exploit the parallelism of data processing
for edge computing applications, we design the reconfigurable
dataflow architecture by fully supporting multi-level parallel
processing, including TLP (Task-level Parallisim), BLP(Block-
level Parallisim), ILP (Instruction-level Parallisim) and DLP
(Data-level Parallisim). A dataflow architecture with config-
urable width of SIMD and tensor structure is proposed to support
DLP. A decoupled pipeline is implemented to improve BLP and
ILP. And multiple DFG tasks can be mapped and scheduled to
the same PE groups or different PE groups to exploit TLP.
� TLP, as is shown in Fig. 4(e), multiple applications can run

on DFU-E concurrently. Each application consists of a sequence
of consecutive tasks. Tasks from two different applications are
mapped to PE00 and PE01, which means that DFU-E supports
parallel execution at task level. Each task is an independent
DFG. Since more tasks executed in a PE in parallel means more
hardware resource requirements, DFU-E hardware supports up
to four tasks mapped to the same PE simultaneously.
� BLP, as described above of TLP, each task consists of

multiple execution blocks (instruction block) that are organized
in a dataflow manner. After one or more task are mapped to a PE,
more instruction blocks are scheduled and executed in the same
hardware resource, which can hide data waiting delays from each
other. Since the execution components are decoupled into LD,
CAL, FLOW, and ST, all blocks are executed in a competitive
manner. The instructions of each block consist of up to four
consecutive execution stages, which are LD Stage, CAL Stage,
FLOW Stage, and ST Stage.
� ILP, the decoupled four function units in DFU-E equal to

a four-issue pipeline processor. different stages of instructions
are decoded and issued separately. Fig. 4(b) and (c) show the
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Fig. 10. Compilation flow of DFU-E compiler.

hardware structure and execution example of instruction-level
parallelism.
� DLP, for applications with simple calculations and large

data blocks, SIMD is an efficient data-level parallel execution
mode, and for matrix and convolution operations, the tensor
is an efficient data-level parallel execution mode. In DFU-E,
we not only implement high-width SIMD and tensor execution
hardware but also support SIMD and tensor reconfigurable in
width to adapt to more application scenarios, which is described
in Section III-C and Fig. 4(g).

By efficiently utilizing TLP, BLP, ILP, and DLP, DFU-E can
make full use of hardware resources and cope with different
application workloads, resulting in enhanced performance and
reduced resource overhead. One key advantage of DFU-E is its
inherent lack of the need for explicit synchronization mecha-
nisms. In the SIMT execution model of NVIDIA GPU, threads
must synchronize frequently, introducing delays and resource
contention. However, in DFU-E’s dataflow execution model,
data synchronization is resolved when the DFG is generated,
eliminating the need for explicit synchronization.

J. Compilation and Mapping

DFU-E is based on a Codelet-like execution model, a coarse-
grained (instruction-block level) dataflow execution model
where inner-block execution is split by the decoupled pipeline.
Based on the DFU-E’s dataflow execution model and multi-level
parallel execution features, we implement an optimized compiler
to generate efficient DFG code for DFU-E, which is comprised
of AI compiler, native compiler, and highly optimized kernel
libraries, as shown in Fig. 10. The AI compiler is implemented
based on the TVM framework. For the neural-network appli-
cations constructed by PyTorch, TensorFlow, MxNet, etc., the
frontend of the AI compiler will transform it to computational

Fig. 11. DFU-E board system and chip floorplan.

graph IR (intermediate representation). Then automatic operator
fusion, quantization and data layout optimization are adopted to
generate more optimized graph IR. For graph nodes of a single
operator, such as a convolution or a relu kernel, manual tuning
based on experience or automatic tuning will assist developers to
generate optimized directive C program. The automatic tuning
will surf through the search space consisting of schedule-specific
parameters such as loop unrolling factors, loop split factors, data
parallelism dimension, to get the an optimized schedule strategy.
Of course, we provide a series of deeply optimized AI operator
libraries for developers to call, similar to NVIDIA’s cuDNN.

The native compiler provides two sets of programming inter-
faces to the operator developers, user-friendly C-style language
and CUDA language. Developers can write a kernel function
by simply adding some #pragma directive which represents
hardware loop, thread parallelism, and data parallelism to C-
style language kernel function. The frontend will transform
C-style operator and CUDA operator to unified LIR, Low-Level
Intermediate Representation, with hardware-related features.

At the native compiler middle end, machine-independent
optimization such as dead code elimination, liveness analysis,
common subexpression elimination and data dependence anal-
ysis will reduce the computational time. At the native compiler
backend, machine-dependent optimization such as register al-
location, and instruction schedule will generate more efficient
target code. At the graph node mapping phase, we implement a
cost model that can predict the performance when the target
code running on our DFU hardware. Finally, we support a
simulator for users to run and debug applications. When the
simulation finish, some profiling information such as running
time, and resource utilization will feed back to the AI compiler
to automatic adjustment the optimization strategy.

IV. EVALUATION

To demonstrate the effectiveness of DFU-E’s hardware and
software, we validated its performance, efficiency, and flexibil-
ity, respectively. The chip and floorplan of DFU-E are shown in
Fig. 11.

A. Experimental Setup

We developed a dataflow simulator based on the SimICT
parallel framework [41]. This simulator is primarily used to
verify correctness and assess performance and computational
component utilization. It simulates behaviors such as compu-
tation, memory access, and instruction conflicts. Additionally,
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TABLE II
SPECIFICATIONS OF THE BENCHMARKS

TABLE III
TECHNICAL SPECIFICATIONS OF ACCELERATORS FOR EVALUATION

we implemented the modules of the dataflow architecture in
Verilog using the Synopsys tool. We synthesized the design
using Synopsys Design Compiler and an industrial 12 nm GP
standard VT library, meeting timing at 1.2 GHz. To ensure ac-
curacy, we calibrated the simulator’s latency error to within 7%
by comparing the Verilog implementation with the functional
correctness of the C simulator. First, we verify the computational
results and functional correctness of the simulator in C and the
implementation in Verilog. The error here refers to the total
latency error of the test program in the C simulator and Verilog
environment. Since the latency of task switching, as well as
the latency of pipeline blocking, is very difficult to ensure
consistency. We also used Synopsys PrimeTime PX for accurate
power analysis based on netlists and application waveforms.
Table III shows the hardware parameters.

The benchmarks we evaluated are all abstracted from DSP
and AI applications adopted in various scenarios, as listed in
Table II. Above all, two critical kernels, FFT and CONV with
various data scales in DSP and AI processing are examined to
illustrate the flexibility and utilization of DFU-E hardware. We
make experiments on the Tensor Unit, network-on-chip, and
memory, to show the efficiency of our design. In order to cover
the thorough imaging-and-detecting application scenario in edge
processing, we first select the SAR algorithm whose processing

Fig. 12. Speedup and Computing unit utilization of GEMM.

flow involves multiple typical dsp kernels, as well as YOLOv5s,
a commonly-used detection model with high real-time demand.
These two algorithms are one of the major end-to-end bench-
marks. Another benchmark is the hybrid processing of Laser
Radar (Millimeter-Wave Radar) processing and CRNN (Convo-
lutional Recurrent Neural Network) detection, which is also a
representative DSP+AI workload in intelligent transportation. In
addition, we also add the Transformer network to the evaluation,
which is widely used in NLP and CV domains. Experiments can
show the superiority of DFU-E over GPU and ASICs.

B. Scalability and Performance

1) Tensor Unit: To validate the effectiveness of our Tensor
unit design, we conducted ablation experiments encompassing
the following three scenarios. We tested experiments with ma-
trix sizes ranging from 4 to 2048. Fig. 12 demonstrates our
proposed methods effectiveness in terms of performance and
utilization improvements. We computed speedup ratios of matrix
operations at different scales for the Base DFU (without Tensor
Unit), DFU (with Tensor Unit but without mapping methods)
and DFU-E (with Tensor Unit and mapping method we proposed
in this paper). Adding the basic Tensor computing Unit to the
DFU showed an average performance improvement of 4.80×,
reaching a 9.47× improvement for matrices over 256. The
acceleration effect is less pronounced for small-scale matrix
operations due to the minimal data size. Each PE unit utilized
in our experiment can only store up to 64× 64 matrix data, so
better acceleration effects manifests from this scale upwards.
Moreover, as the experiment instantiates a 4× 4 PE array, more
substantial acceleration occurs above 256. For the DFU-E, there
is no significant difference from DFU with Tensor units for
smaller scales (below 32) due to minimal data size failing to
leverage optimized parallelism and storage architecture. Across
all scales, DFU-E shows an average performance improvement
of 13.49× over the Base DFU. When on-chip storage is insuffi-
cient to store the entire matrix and using the mapping algorithm
we proposed in this paper, our optimized design can be fully
effective, resulting in an average performance improvement of
29.34× over the Base DFU. Our newly implemented Tensor
unit achieves a 9.48× performance improvement across various
scales of matrix operations, and the dataflow graph mapping
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Fig. 13. Routing conflict rates of NoC.

Fig. 14. Access Latency Comparison of Base MEM and Hybrid MEM.

methods we proposed in this paper yields a 3.09× performance
enhancement.

2) NoC and Memory: To evaluate the effectiveness of our
forwarding network, we perform conflict comparison between
our design and the step-by-step mesh baseline. The comparison
result is shown in Fig. 13, where routing conflict rate refers to the
percentage of package conflicts in total package transfers while
PE array is running. Our forwarding design substantially reduces
the routing conflict rate by 41% on average. These results show
that forwarding connection can alleviate or even resolve the
bottleneck of network congestion of dataflow architecture.

To evaluate the effectiveness of our hybrid on-chip memory
design, we implemented the following two different configura-
tions: 1) Base MEM: It is our baseline, using the DFU-E with
on-chip scratchpad memory (SPM), but without hybrid on-chip
memory. 2) Hybrid MEM: It replaces the on-chip SPM with
the hybrid on-chip memory. Fig. 14 shows the access latency
for CONV and FFT with different data sizes using SPM and
hybrid on-chip memory, normalized to SPM. Compared to SPM,
Hybrid MEM effectively mitigates memory access latency, re-
sulting in reductions of 17.1% on average. For small-scale
regular applications like small-scale CONV, where the access
and computation patterns are highly fixed and all data can be
efficiently prefetched, both Hybrid MEM and SPM demonstrate
equivalent low access latency. Conversely, in scenarios where the
proportion of data with a large span of memory access addresses
is not negligible, Hybrid MEM exhibits notable access latency
reductions: 34.8% (1 K× 1K FFT), 41.6% (8K× 8K FFT).
The performance discrepancy of SPM in large-scale applications
primarily arises from its lack of the dynamic global addressing
capability, which severely impacts its access efficiency.

C. Versus GPU

We compared the DFU-E with NVIDIA Jetson AGX Orin
64 GB, which is the most powerful processor for edge com-
puting. As depicted in Table III, our DFU-E has a slightly
lower performance in terms of the peak performance on FP64,
FP32, FP16, and INT8 data types. Orin has a larger on-chip
memory. The memory bandwidth is the same as 204.8 GB/s.
In the experiment, we use single and double precision for DSP
applications and half-precision for AI applications, we try to
use CUDA’s deep-optimized library to implement the corre-
sponding algorithms, such as CuDNN, CuFFT, and cuBLAS. We
also compared the performance and energy efficiency of neural
networks at different precisions, as shown in Fig. 18. For int8,
DFU-E’s performance is slightly lower than Orin’s because the
peak computation power is lower than Orin, but DFU-E achieves
higher energy efficiency.

Fig. 15 shows the advantages of DFU-E over Orin in terms of
utilization and speedup. In the experiment, we used two DSP and
AI core kernels of different scales, FFT and Convolution algo-
rithms. The results show that in the small amount of data, DFU-E
has a clear advantage over Orin, especially for FFT. When the
data size gradually increases, the experimental results tend to be
consistent. The significant performance improvements achieved
by DFU-E rely on the effective enhancement of multi-level par-
allelism of the dataflow execution model, SPM, and DMA mech-
anism, as well as optimizations applied by the software stack
(such as optimized compiler and high-performance libraries).
On the other hand, we have deeply optimized task-initialization
and task-switching efficiency, which can gain advantages for
lightweight workloads. For example, FFT 128 × 128 achieves
the highest utilization (4.8×) and speedup (5.6× ) over Orin.
When it comes to FFT 8K×8K, the factor affecting performance
is gradually changed from memory access to calculation, and the
performance gap gradually narrows.

The performance and energy efficiency of DSP and AI appli-
cations are shown in Fig. 16, including SAR imaging, YOLO,
CRNN, Transformer and Laser Radar. We also demonstrate
the ±2SD standard deviation of error bar in the speedup re-
sults. error bar of The detailed algorithm steps of SAR imag-
ing and YOLOv5s are shown in Fig. 2. As we can see from
the results, although the peak computing power of DFU-E is
lower than that of Orin, due to the higher utilization, DFU-E
achieves better performance on most of the workloads. For
example, DFU-E gains up to 1.81× performance advantage on
the MotionCompensation2 stage, and 1.42× on average for SAR
imaging. Other applications, DFU-E achieves 1.03×, 1.67×,
1.05×, 1.12× and 1.33× for YOLO, CRNN, Transformer-bs64,
Transformer-bs512 and Laser radar, respectively. For large-scale
workloads, such as Backbone (Conv 1, 2, 4), Linear6-bs64, and
Attention-bs512, Orin also achieves higher utilization, therefore
resulting in higher performance due to higher peak computation
power.

In addition to performance testing, we also measured energy
efficiency, which is more reflective of the effectiveness of the
design. The result reveals that, for most workloads, DFU-E has
certain advantages over Orin, such as SAR imaging (1.27× on
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Fig. 15. Utilization and speedup of FFT and Conv with different batch size.

Fig. 16. Speedup and energy efficiency comparison between DFU-E and GPU.

average), CRNN (1.12× on average), Transformer-bs64 (1.18×
on average) and Laser Radar (1.22× on average). For YOLO
and Transformer-bs512, DFU-E is slightly less energy efficient
than Orin (0.97× and 0.99× respectively), because Orin has a
slight advantage of the utilization of the Convolution workloads,
which accounts for the main proportion of the computation. It
should be noted that in the SAR algorithm, the interpolation
calculation steps (including sinc interpolation and lagrange
interpolation) adopt the Cache mode because of irregular data
access. Compared with SPM mode, Cache mode achieves a 6.3%
performance improvement.

D. Versus ASIC

To verify the execution effectiveness of DFU-E compared to
domain-specific accelerators on different AI and DSP applica-
tions, we selected MC-YOLO [42] and TI C6678 as dedicated
accelerators for AI and DSP domains, respectively. TI C6678
is a prominent DSP for all the DSP applications mentioned
in our experiment with 8 cores, while each core has 16-FP
adders/multipliers, using DSPLIB C66x 3.4.0.0. We normalized
the peak performance of accelerators to DFU-E.

Fig. 17 demonstrates the improvement in energy efficiency
and speedup achieved by DFU-E compared to two domain
specific accelerators. First, compared to the YOLO-specific ac-
celerator, MC-YOLO, DFU-E achieves better energy efficiency

Fig. 17. Energy Efficiency and Speedup over ASICs (Normalized to ASICs).

Fig. 18. Comparison of efficiency with different precision.

on each representative convolutional layer of YOLO, and ex-
hibits nearly 1.29× of energy efficiency improvement and 1.27×
of speedup in end-to-end experiments. Second, DFU-E also
achieves a maximum 2.02× of energy efficiency improvement
and 1.69× of speedup in different scales of DSP applications
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such as FFT and SAR, with an average energy efficiency im-
provement and speedup of 1.47× and 1.51×, respectively.

E. Discussion

The experiment results show that DFU-E (12 nm) gained
better energy efficiency advantages over NVIDIA Jetson Orin
(8 nm). We believe that the benefits come from deep optimization
of hardware and software co-design. In terms of hardware, we
adopt a novel multi-layer parallel dataflow execution model
and reconfigurable PE/sPE architecture, which improves the
utilization of computing resources and reduces the overhead of
task scheduling and switching. This is reflected in the better
performance and energy efficiency advantages of DFU-E for
small-scale tasks. We also optimize NoC, on-chip memory and
other modules to further accelerate memory access efficiency.
An efficient and easy-to-use compiler and programming model
are provided to help developers to exploit higher efficiency. All
these hardware and software design decisions contribute to the
higher performance and energy efficiency that DFU-E offers for
edge computing.

V. RELATED WORKS

In recent years, many DSP and AI accelerators that can be
applied in edge computing scenarios have been proposed to
advance the performance improvement of DSP or AI applica-
tions [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53].

Jetson AGX Orin [54], released by NVIDIA, is a typical,
powerful, and energy-efficient general-purpose accelerator that
is mainly used for edge computing, including autonomous driv-
ing, smart city, industrial manufacturing, etc., which has high
computing power for both DSP and AI applications. In this
paper, we mainly conducted a comprehensive comparison with
Orin in DSP and AI processing. Of course, Orin is a very
comprehensive and excellent general-purpose accelerator. This
paper does not focus on other functional modules in Orin.

Mozart [37] manipulates the dataflow and data reuse as funda-
mental architecture primitives to effectively support AI applica-
tions with low latency and high performance. Plasticine [55]
(SambaNova [56]) is a novel reconfigurable architecture for
efficiently executing both sparse and dense AI applications
composed of parallel patterns. Certainly, there are numerous
excellent architectures for AI processing, such as Groq [57],
Goya [58],TPUv4 [59], DianNao series [60], [61] and dataflow
architectures by Tony Nowatzki’s team [20], [62], [63]. Besides,
some works focus on the scheduling optimization of AI appli-
cations on edge devices. HiTDL [64] discusses the challenges
of efficiently deploying deep neural networks in mobile edge
environments, and it proposes the HiTDL framework and models
the performance of DNN inference latency and throughput. [65],
[66] study the task allocation problem when performing multi-
task migrated learning (MTL) on resource-constrained edge
devices and propose a data-driven collaborative task alloca-
tion (DCTA) approach, while TrimCaching [67] proposes a
novel model placement scheme called Parameter Shared Model
Caching (TrimCaching) for caching AI models in wireless edge

networks. All these genius innovations provide us with a lot of
design inspiration.

For DSP applications, due to the diversity of DSP algorithms,
designers usually implement high-width vector units based on
general-purpose CPUs or FPGAs to accelerate DSP applica-
tions, which has relatively low efficiency due to the inevitable
instruction loading and parsing process [68], and are insuffi-
ciently adaptable to the fast development of DSP algorithms.
Texas Instruments [69] develops a series of multicore DSPs and
implements complete DSP operator libraries, which are widely
used in the world. RASP [70] uses the associated reconfigurable
spatial architectures to further resolve the problem, among which
dataflow theories are widely used for fully exploiting the data
parallelism [32]. Compared to them, our DFU-E improves ex-
ecution parallelism and reduces memory access based on the
dataflow execution model, while taking into account vector
computing efficiency and general computing capabilities.

VI. CONCLUSION

There is no doubt that edge computing has become one of
the most important computing scenarios. The design of edge
processor architecture with high computing power, high energy
efficiency, and strong versatility has become a current research
hotspot, which is also our concern in this paper. Therefore, we
propose a dataflow-based reconfigurable architecture equipped
with a novel compute engine, memory hierarchy, NoC, power
management, and optimized programming and compilation soft-
ware stack. The multi-layer parallel execution model supported
by DFU-E fully utilizes hardware resources and improves energy
efficiency. The results underscore the effectiveness of DFU-E’s
design, which emphasizes performance, efficiency, and flexi-
bility in the ever-evolving landscape of computing systems,
particularly within the context of edge computing.

Looking ahead, we plan to enhance our architecture through
adaptive dataflow graph optimization, heterogeneous computing
support, and scalable distributed scheduling. By developing
adaptive dataflow architectures that modify graph structures
dynamically based on real-time workloads, we aim to create self-
optimizing systems supported by machine learning techniques
like reinforcement and online learning. Additionally, integrating
heterogeneous computing will enable our architecture to flexibly
leverage CPUs, GPUs, and specialized accelerators within a
unified dataflow model, ensuring efficient adaptation to diverse
computational needs. Finally, advancing distributed scheduling
techniques will allow us to manage concurrent dataflow graphs
across edge devices in a scalable and reliable manner, minimiz-
ing control bottlenecks.
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